Logistic Regression
Yi∼Ber(πi), f(yi)=πiyi(1−πi)1−yi
⇒ g(μ)=g(π)=ln1−πiπi=Xiβπi=1+exp(Xβ)exp(Xβ)L=i=1∏nπiyi(1−πi)1−yi=i=1∏n(1+exp(Xiβ)exp(Xiβ))yi(1+exp(Xiβ)1)1−yii=1∑n[yiXiβ−ln(1+exp(Xiβ))]MLE of β doesn’t has closed form.
Odds ratio
Sex | Disease | No disease | Probability of disease | Odds |
---|
male | 217 | 162 | 217+162217=0.573 | 1−0.5730.573=1.342 |
female | 105 | 136 | 105+136105=0.436 | 1−0.4360.436=0.773 |
odds(disease for female)odds(disease for male)=0.7731.342=1.74>1代表男性患疾病的機率比女性來的高
損失函數
−n1i=1∑n[yilnpi+(1−yi)ln(1−pi)],yi=0 or 1−n1i=1∑nc=1∑kyi,clnpi,c假如現在有3個類別
Sample | yi | pi |
---|
1 | (1, 0, 0) | (0.7, 0.2, 0.1) |
2 | (0, 1, 0) | (0.1, 0.6, 0.3) |
3 | (0, 0, 1) | (0.2, 0.3, 0.5) |
(−ln0.7−ln0.6−ln0.5)×31≈0.52誤差
MAE
−n1i=1∑n∣yi−y^i∣MSE
−n1i=1∑n(yi−y^i)2RMSE
−n1i=1∑n(yi−y^i)2