Logistic

Logistic Regression

YiBer(πi)Y_i \sim Ber(\pi_i), f(yi)=πiyi(1πi)1yif(y_i)=\pi_i^{y_i} (1-\pi_i)^{1-y_i}

g(μ)=g(π)=lnπi1πi=Xiβ πi=exp(Xβ)1+exp(Xβ)\begin{align*} & g(\mu)=g(\pi)= \ln{\frac{\pi_i}{1-\pi_i}} = \mathbb{X}_i \boldsymbol{\beta} \\\\\\ \Rightarrow \ & \pi_i = \frac{\texttt{exp}(\mathbb{X} \boldsymbol{\beta}) }{1+\texttt{exp}(\mathbb{X} \boldsymbol{\beta})} \end{align*}L=i=1nπiyi(1πi)1yi=i=1n(exp(Xiβ)1+exp(Xiβ))yi(11+exp(Xiβ))1yi\begin{align*} L & =\prod_{i=1}^n \pi_i^{y_i} (1-\pi_i)^{1-y_i} \\\\\\ & = \prod_{i=1}^n \left(\frac{\texttt{exp}(\mathbb{X}_i \boldsymbol{\beta}) }{1+\texttt{exp}(\mathbb{X}_i \boldsymbol{\beta})} \right)^{y_i} \left(\frac{1 }{1+\texttt{exp}(\mathbb{X}_i \boldsymbol{\beta})} \right)^{1-y_i} \end{align*}i=1n[yiXiβln(1+exp(Xiβ))] \sum_{i=1}^n \left[ y_i \mathbb{X}_i \boldsymbol{\beta} -\ln(1+\texttt{exp}(\mathbb{X}_i \boldsymbol{\beta})) \right]

MLE of β\boldsymbol{\beta} doesn’t has closed form.

Odds ratio

SexDiseaseNo diseaseProbability of diseaseOdds
male217162217217+162=0.573\frac{217}{217+162} = 0.5730.57310.573=1.342\frac{0.573}{1-0.573} = 1.342
female105136105105+136=0.436\frac{105}{105+136} = 0.4360.43610.436=0.773\frac{0.436}{1-0.436} = 0.773
odds(disease for male)odds(disease for female)=1.3420.773=1.74>1\begin{align*} \frac{\text{odds(disease for male)}}{\text{odds(disease for female)}} = \frac{1.342}{0.773} = 1.74>1 \end{align*}

代表男性患疾病的機率比女性來的高

損失函數

1ni=1n[yilnpi+(1yi)ln(1pi)],yi=0 or 1\begin{align*} -\frac{1}{n} \sum_{i=1}^n \left[ y_i \ln p_i + (1 - y_i) \ln (1 - p_i) \right], \quad y_i = 0 \text{ or } 1 \end{align*}1ni=1nc=1kyi,clnpi,c\begin{align*} -\frac{1}{n} \sum_{i=1}^n \sum_{c=1}^k y_{i,c} \ln p_{i,c} \end{align*}

假如現在有3個類別

Sampleyiy_ipip_i
1(1, 0, 0)(0.7, 0.2, 0.1)
2(0, 1, 0)(0.1, 0.6, 0.3)
3(0, 0, 1)(0.2, 0.3, 0.5)
(ln0.7ln0.6ln0.5)×130.52\begin{align*} \left( -\ln 0.7 - \ln 0.6 - \ln 0.5 \right) \times \frac{1}{3} \approx 0.52 \end{align*}

誤差

MAE

1ni=1nyiy^i\begin{align*} -\frac{1}{n} \sum_{i=1}^n \left| y_i-\hat{y}_i \right| \end{align*}

MSE

1ni=1n(yiy^i)2\begin{align*} -\frac{1}{n} \sum_{i=1}^n \left( y_i-\hat{y}_i \right)^2 \end{align*}

RMSE

1ni=1n(yiy^i)2\begin{align*} -\frac{1}{n} \sum_{i=1}^n \sqrt{\left( y_i-\hat{y}_i \right)^2 } \end{align*}
Licensed under CC BY-NC-SA 4.0
使用 Hugo 建立
主題 StackJimmy 設計