Multiple testing

Background

As Multiple testing, we need to adjust p-value.

Control Type I error

Under H0H_0

t1=β^1se(β^1)tnp\begin{align*} t_1=\frac{\hat{\beta}_1}{\operatorname{se}\left(\hat{\beta}_1\right)} \sim t_{n-p} \end{align*}

As sample size nn large,tnpN(0,1)t_{n-p} \approx N(0,1). Under null H0H_0, effect size βN(0,1)\beta \sim N(0,1) generally. Suppose P(P( Type I error )=α)=\alpha ,for mm test

 FWER =1(1α)m1(1mα)\begin{align*} \text { FWER }=1-(1-\alpha)^m \approx 1-(1-m \alpha) \end{align*}

In Bonferroni Correction, to control FWER α\leq \alpha

mαBon ααBon αm\begin{align*} \begin{aligned} & \Rightarrow \quad m \alpha_{\text {Bon }} \leq \alpha \\ & \Rightarrow \quad \alpha_{\text {Bon }} \leq \frac{\alpha}{m} \end{aligned} \end{align*}

Control False discovery rate

FDR (False Discovery Rate)

FDR(q)=E[F(q)S(q)]\begin{align*} \operatorname{FDR}\left(q^*\right)=E\left[\frac{F\left(q^*\right)}{S\left(q^*\right)}\right] \end{align*}
  • qq^* : threshold
  • SS : number of significance
  • FF : number of false discovery

For mm test,p-value p1,,pmp_1, \ldots, p_m

  1. order p-value p(1)p(m)p_{(1)} \leq \ldots \leq p_{(m)}
  2. k=defargmaxi(piimq), i=1,2,,mk \overset{\underset{\mathrm{def}}{}}{=} \underset{i}{\operatorname{argmax}} \left(p_i \leq \frac{i}{m} q^*\right),\ i=1,2, \ldots, m
  3. reject H(i), i=1,,kH_{(i)},\ i=1, \ldots, k

q-value

FDR^(t)=π^0mtS(t)=π^0mtiI(Pit)\begin{align*} \hat{F D R}(t)=\frac{\hat{\pi}_0 m t}{S(t)}=\frac{\hat{\pi}_0 m t}{\sum_i I\left(P_i \leq t\right)} \end{align*}

where π0=P(H0 is true)\pi_0=P(H_0 \text{ is true} )tt is cut off

π^0(λ)=iI(Pit)m(1λ=number of H0number of total\begin{align*} \hat{\pi}_0(\lambda) &= \frac{\sum_i I\left(P_i \leq t\right)}{m(1-\lambda} \\ &= \frac{\text{number of } H_0}{\text{number of total}} \end{align*}
Licensed under CC BY-NC-SA 4.0
使用 Hugo 建立
主題 StackJimmy 設計