Featured image of post Trigonometric Angle Sum Identities

Trigonometric Angle Sum Identities

Explain the identities in complex plane.

Background

In complex plane, x-axis, y-axis are R\mathbb{R} and imaginary number i=1i=\sqrt{-1} respectively. The complex number 2+3i2+3i expressed as a vector form (0,0)(0,0) to (2,3)(2,3). Let two unit vector z1,z2\overset{\rightharpoonup }{z_1}, \overset{\rightharpoonup }{z_2}

z1=cosθ1+isinθ1=(cosθ1,sinθ1)z2=cosθ2+isinθ2=(cosθ2,sinθ2)\begin{align*} & \overset{\rightharpoonup }{z_1} = \cos{\theta_1}+ i\sin{\theta_1} = (\cos{\theta_1}, \sin{\theta_1}) \\ & \overset{\rightharpoonup }{z_2} = \cos{\theta_2}+ i\sin{\theta_2} = (\cos{\theta_2}, \sin{\theta_2}) \end{align*}

Identities in Complex Plane

In complex plane, vector z1z2z_1 \cdot z_2 with length z1z2|z_1||z_2| and angel θ1+θ2\theta_1+ \theta_2. We write the math equation

z1z2=cos(θ1+θ2)+isin(θ1+θ2)=(cosθ1+isinθ1)(cosθ2+isinθ2)=(cosθ1cosθ2+i2sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)=(cosθ1cosθ2sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)\begin{align*} \overset{\rightharpoonup }{z_1} \cdot \overset{\rightharpoonup }{z_2} &= \cos{(\theta_1+\theta_2)}+ i\sin{(\theta_1+\theta_2)} \\ &= (\cos{\theta_1}+ i\sin{\theta_1}) \cdot (\cos{\theta_2}+ i\sin{\theta_2}) \\ &= (\cos{\theta_1} \cos{\theta_2} +i^2 \sin{\theta_1} \sin{\theta_2}) + i(\cos{\theta_1} \sin{\theta_2}+ \sin{\theta_1} \cos{\theta_2}) \\ &= (\cos{\theta_1} \cos{\theta_2} - \sin{\theta_1} \sin{\theta_2}) + i(\cos{\theta_1} \sin{\theta_2}+ \sin{\theta_1} \cos{\theta_2}) \end{align*}

Therefore, we explain the formula

cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2sin(θ1+θ2)=cosθ1sinθ2+sinθ1cosθ2\begin{align*} & \cos{(\theta_1+\theta_2)} = \cos{\theta_1} \cos{\theta_2} - \sin{\theta_1} \sin{\theta_2} \\ & \sin{(\theta_1+\theta_2)} = \cos{\theta_1} \sin{\theta_2}+ \sin{\theta_1} \cos{\theta_2} \end{align*}

Reference

Licensed under CC BY-NC-SA 4.0
使用 Hugo 建立
主題 StackJimmy 設計